Learning terrain segmentation with classifier ensembles for autonomous robot navigation in unstructured environments
نویسندگان
چکیده
Autonomous robot navigation in unstructured outdoor environments is a challenging area of active research and is currently unsolved. The navigation task requires identifying safe, traversable paths that allow the robot to progress toward a goal while avoiding obstacles. Stereo is an effective tool in the near field, but used alone leads to a common failure mode in autonomous navigation in which suboptimal trajectories are followed due to nearsightedness, or the robot’s inability to distinguish obstacles and safe terrain in the far field. This can be addressed through the use of machine learning methods to accomplish near-to-far learning, in which near-field terrain appearance and stereo readings are used to train models able to predict far-field terrain. This paper proposes to enhance existing, memoryless near-to-far learning approaches through the use of classifier ensembles that allow terrain models trained on data seen at different points in time to be preserved and referenced later. These stored models serve as memory, and we show that they can be leveraged for more effective far-field terrain classification on future images seen by the robot. A five-factor, full-factorial, repeated-measures experimental evaluation is performed on hand-labeled data sets taken directly from the problem domain. The experiments result in many statistically significant findings, the most important being that the proposed near-to-far Best-K Ensemble Algorithm, with appropriate parameter selection, outperforms the single-model, nonensemble baseline approach in far-field terrain classification. Several other findings that inform the use of near-to-far ensemble methods are also presented. C © 2009 Wiley Periodicals, Inc.
منابع مشابه
Learning Rough-Terrain Autonomous Navigation
Autonomous navigation by a mobile robot through natural, unstructured terrain is one of the premier challenges in field robotics. The DARPA UPI program was tasked with advancing the state of the art in robust autonomous performance through challenging and widely varying environments. In order to accomplish this goal, machine learning techniques were heavily utilized to provide robust and adapti...
متن کاملLearning from Demonstration for Autonomous Navigation in Complex Unstructured Terrain
Rough terrain autonomous navigation continues to pose a challenge to the robotics community. Robust navigation by a mobile robot depends not only on the individual performance of perception and planning systems, but on how well these systems are coupled. When traversing complex unstructured terrain, this coupling (in the form of a cost function) has a large impact on robot behavior and performa...
متن کاملLearning Long-range Terrain Perception for Autonomous Mobile Robots
Long-range terrain perception has a high value in performing efficient autonomous navigation and risky intervention tasks for field robots, such as earlier recognition of hazards, better path planning, and higher speeds. However, Stereo-based navigation systems can only perceive near-field terrain due to the nearsightedness of stereo vision. Many near-to-far learning methods, based on regions’ ...
متن کاملOn-Line Learning of the Traversability of Unstructured Terrain for Outdoor Robot Navigation
We address the problem of learning to recognize traversable terrain in an unstructured outdoor environment a core functionality for autonomous robot navigation. The traversability learning problem is challenging for two reasons. First, while general-purpose sensing can be used to identify the existence of particular terrain features such as vegetation and sloping ground, the traversability of t...
متن کاملInvariant Feature Learning on a Mobile Robot
Teaching a robot to perceive and navigate in an unstructured natural world is a difficult task. Without learning, navigation systems are short-range and extremely limited. With learning, the robot can be taught to classify terrain at longer distances, but these classifiers can be fragile as well, leading to extremely conservative planning. A robust, high-level learning-based perception system f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Field Robotics
دوره 26 شماره
صفحات -
تاریخ انتشار 2009